2xcome S

Chapitre 4: Espaces vectoriels

La notion d'espace vectoriel généralise les propriétés de \mathbb{R}^n et de l'ensemble des matrices $M_{m\times n}(\mathbb{R})$.

Rappel (notation): E, F ensembles

$$E \times F = \frac{1}{2} (e, f) \mid e \in F, f \in$$

Définition 33 (espace vectoriel).

On appelle espace vectoriel (réel) un ensemble non-vide V composé d'éléments sur lesquels on définit une opération d'addition et une opération de multiplication par un scalaire dans R

$$+: \bigvee \times \bigvee \longrightarrow \bigvee \\ (u, v) \longmapsto u + v \qquad (\lambda, v) \longmapsto \lambda \vee$$

telles que les propriétés suivantes soient satisfaites :

0)
$$u+v\in V$$
 et $\lambda u\in V$; (def. des opérations)

1)
$$u + v = v + u$$
 pour tout $u, v \in V$; (comma tativité)

2)
$$(u+v)+w=u+(v+w)$$
 pour tout $u,v,w\in V$;

3) Il existe un élément de V, noté 0_V , tel que $u+0_V=u$ pour tout $u\in V$; (vecteur nul, élément neutre pour l'addition)

4) Pour tout $u \in V$, il existe un élément noté $-u \in V$ tel que

$$u+(-u)=0_V;$$
 (-le est l'opposé de le)

5)
$$\lambda(u+v) = \lambda u + \lambda v$$
 pour tout $u, v \in V$ et $\lambda \in V$; distributively uixte

6)
$$(\lambda + \mu)u = \lambda u + \mu u$$
 pour tout $u \in V$ et $\lambda, \mu \in \mathbb{R}$;

7)
$$\lambda(\mu u) = (\lambda \mu)u$$
 pour tout $u \in V$ et $\lambda, \mu \in \mathbb{R}$;

8)
$$1 \cdot u = u$$
 pour tout $u \in V$.

The rice

On appelle les éléments de V des vecteurs, notés $v \in V$.

Dans 12°, on note les vecteurs ve R°.

Remarque

On peut également définir des espaces vectoriels rationnels en remplaçant IR par Q ou des espaces vectoriels complexes en remplaçant IR par C.

Propriétés Pour tout espace vectoriel V, on a :

- Or est unique (P₄)
- (P2) l'opposé de v pour l'addition est unique
- (P3) O.W = OV YUEV

 (P4) (-1)·W = -W YUEV

 (P5) $\lambda \cdot O_V = O_V$ YLER

 Premoe: en exercice

Exemples classiques

1) Pour tout $n \geq 1$, \mathbb{R}^n est un espace vectoriel réel.

2) L'ensemble des matrices $M_{m\times n}(\mathbb{R})$ est un espace vectoriel <u>réel</u>.

3) L'ensemble des fonctions rélles $f: \mathbb{R} \to \mathbb{R}$ muni des opérations

· La fet
$$f + g : \mathbb{R} \rightarrow \mathbb{R}$$
 $(f + g)(\infty) = f(\infty) + g(\infty)$
· la fet $\lambda f : \mathbb{R} \rightarrow \mathbb{R}$ $(\lambda f)(\infty) = \lambda f(\infty)$

est un espace vectoriel réel.

Remarque

- 1) Rest un espace vectoriel réel (R=R1!) et rationnel: Qx R - R (x,v) -> xvel Cok)
- () Q est un espace vectoriel rationnel mais pas reil:

 () Q × Q → Q

 () V) → > > Q

 () V) → > Q

 () V) → > EQ pas toujours ok. $(\lambda, v) \mapsto \lambda v \in \mathcal{O}(\partial u)$ $(\lambda, v) \mapsto \lambda \in \mathcal{Q}$ pas toujous ok: L'ensemble des polynômes à coefficients réels

Pour $n \geq 0$, on définit

Pour
$$n \ge 0$$
, on définit
$$P_n = \begin{cases} p(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_n t^n + a$$

Ex:
$$\frac{1}{2}t^2 - 2t + 3 \in \mathbb{P}_2$$
 mais auss: \mathbb{P}_3 , \mathbb{P}_4 etc. \mathbb{P}_4

$$\alpha_2 = \frac{1}{2}, \quad \alpha_4 = -2, \quad \alpha_5 = 3$$

Operations: $p(t) = a_n t^n + \dots + a_n t + q_n$ $q(t) = b_n t^n + \dots + b_n t + b_n$ $p(t) + q(t) = (q_n + b_n) t^n + \dots + (q_n + b_n) t + q_n + b_n$ $\lambda p(t) = (\lambda a_n) t^n + \dots + (\lambda a_n) t + \lambda q_n$

Exercice: Nontrer que Prost un EVrécl.

On définit UPn = IP l'ens. des polynomes.

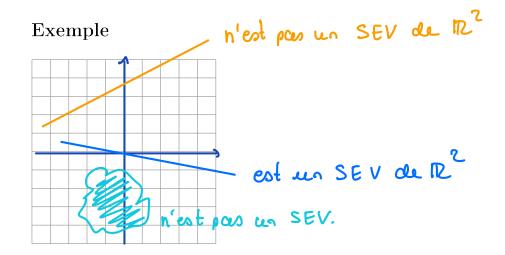
Exercice: Nontier que IP est un EV.

4.1 Sous-espaces vectoriels
Soit $\vec{v} \in \mathbb{R}^2$. Alors spansify est un $EV \subset \mathbb{R}^2$ On dit que spansify est un sous-espace vectoriel de \mathbb{R}^2 (SEV)

Définition 34 (sous-espace vectoriel).

Soit V un espace vectoriel (EV). On appelle sous-espace vectoriel une partie W de V telle que

- 1) Ov & W
- 2) $\forall v, w \in W$, $v + w \in W$ (stabilité pour l'addition)
- 3) VVEW et 2 EM, 2veW (stab. pour la mult.



Remarques

- 1) Pour vérifier qu'une partie WCV d'un EV est un SEV, il nuffit de vérifier les 3 axiomes. En conséquence, W patinfait les axiomes de la déf. 33 et pera automatiquement un EV.
- 2) Tout VCV est un SEV de lui-même.

Exemples

- 1) $\forall \vec{v} \in \mathbb{R}^2$, span $\forall \vec{v} \neq \vec{v} \in \mathbb{R}^2$.
- 2) Yvi, we R, span svi, w's est un SEV de R3
- 3) IP est un EV.

 ProPrest un SEV de Propreut en déduire que
 Prest un EV, dont la structure est induite par
 celle de P.
- 4) Soit Vur EV. Alors 7003 est un SEV de V. C'est le plus petit possible.
 - 1 40 j avec v≠Ov n'est pas un SEV de V.

Sous-espaces	vectoriels	engendrés	par	une	partie	d'un
espace vector	$\operatorname{iel}V$					

Définition 35 (span ou vect).

Soit V un espace vectoriel et v_1,\ldots,v_p des vecteurs de V. L'ensemble des combinaisons linéaires de v_1,\ldots,v_p s'appelle le span.

Théorème 29. Soient v_1, \ldots, v_p des éléments d'un espace vectoriel V. Alors

Preuve

Exemple

Définition 36 (famille génératrice). On dira que $\{v_1, \ldots, v_p\}$ est une famille génératrice de span $\{v_1, \ldots, v_p\}$.

Exemple

4.2 Applications linéaires, noyaux et images

Définition 37 (application linéaire).

Soient V et W deux espaces vectoriels et $T:V\to W$. On dit que T est une application linéaire si elle associe à tout élément v de V un unique élément T(v) de W et si T vérifie

1.

2.

Exemples

Définition 38 (noyau d'une application linéaire). Soient V et W deux espaces vectoriels et $T:V\to W$ une application linéaire. Le noyau de l'application T est l'ensemble

Exemple

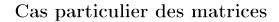
Définition 39 (image d'une application linéaire). Soient V et W deux espaces vectoriels et $T:V\to W$ une application linéaire. L' image de l'application T est l'ensemble

Exemple

Théorème 30. Soient V et W deux espaces vectoriels et $T:V\to W$ une application linéaire. Alors

- 1. Ker(T) est un sous-espace vectoriel de V.
- 2. Im(T) est un sous-espace vectoriel de W.

Preuve



Définition 40 (noyau d'une matrice).

Soit $A \in M_{m \times n}(\mathbb{R})$. Le noyau de la matrice A, noté $\operatorname{Ker}(A)$, est l'ensemble

Théorème 31. Le noyau d'une matrice $A \in M_{m \times n}(\mathbb{R})$ est un sousespace vectoriel de \mathbb{R}^n .

Définition 41 (image d'une matrice).

Soit $A \in M_{m \times n}(\mathbb{R})$. L'image de A, notée $\mathrm{Im}(A)$, est l'ensemble

Théorème 32. Soit $A \in M_{m \times n}(\mathbb{R})$. Alors Im(A) est un sous-espace vectoriel de \mathbb{R}^m .

Preuve

Exemple